Transport Layer

32

STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

Most Important Ideas and Concepts from Chapter 3

¢ Logical communication between two processes. Application processes use the

logical communication provided by the transport layer to send messages to each
other, free from the worries of the details of the network infrastructure used to
carry these messages. Whereas a transport-layer protocol provides logical com-
munication between processes, a network-layer protocol provides logical com-
munication between hosts. This distinction is important but subtle; it is explained
on page 186 of the textbook with a cousin/house analogy. An application protocol
lives only in the end systems and is not present in the network core. A computer
network may offer more than one transport protocol to its applications, each pro-
viding a different service model. The two transport-layer protocols in the Internet—
UDP and TCP—yprovide two entirely different service models to applications.

Multiplexing and demultiplexing. A receiving host may be running more than one
network application process. Thus, when a receiving host receives a packet, it must
decide to which of its ongoing processes it is to pass the packet’s payload. More
precisely, when a transport-layer protocol in a host receives a segment from the net-
work layer, it must decide to which socket it is to pass the segment’s payload. The
mechanism of passing the payload to the appropriate socket is called demulti-
plexing. At the source host, the job of gathering data chunks from different sock-
ets, adding header information (for demultiplexing at the receiver), and passing the
resulting segments to the network layer is called multiplexing.

Connectionless and connection-oriented demultiplexing. Every UDP and TCP
segment has a field for a source port number and another field for a destination port
number. Both UDP (connectionless) and TCP (connection-oriented) use the values
in these fields—called port numbers—to perform the multiplexing and demulti-
plexing functions. However, UDP and TCP have important, but subtle differences
in how they do multiplexing and demultiplexing. In UDP, each UDP socket is as-
signed a port number, and when a segment arrives at a host, the transport layer
examines the destination port number in the segment and directs the segment to the
corresponding socket. On the other hand, a TCP socket is identified by the four-
tuple: (source IP address, source port number, destination IP address, destination
port number). When a TCP segment arrives from the network to a host, the host
uses all four values to direct (demultiplex) the segment to the appropriate socket.

UDP. The Internet (and more generally TCP networks) makes available two trans-
port-layer protocols to applications: UDP and TCP. UDP is a no-frills, bare-bones
protocol, allowing the application to talk almost directly with the network layer.
The only services that UDP provides (beyond IP) is multiplexing/demultiplexing
and some light error checking. The UDP segment has only four header fields:
source port number, destination port number, length of the segment, and checksum.
An application may choose UDP for a transport protocol for one or more of the fol-
lowing reasons: it offers finer application control of what data is sent in a segment

CHAPTER 3 e TRANSPORT LAYER

and when; it has no connection establishment; it has no connection state at servers;
and it has less packet header overhead than TCP. DNS is an example of an appli-
cation protocol that uses UDP. DNS sends its queries and answers within UDP
segments, without any connection establishment between communicating entities.

Reliable data transfer. Recall that, in the Internet, when the transport layer in the
source host passes a segment to the network layer, the network layer does not guar-
antee it will deliver the segment to the transport layer in the destination host. The
segment could get lost and never arrive at the destination. For this reason, the net-
work layer is said to provide unreliable data transfer. A transport-layer protocol
may nevertheless be able to guarantee process-to-process message delivery even
when the underlying network layer is unreliable. When a transport-layer protocol
provides such a guarantee, it is said to provide reliable data transfer (RDT). The
basic idea behind reliable data transfer is to have the receiver acknowledge the re-
ceipt of a packet; and to have the sender retransmit the packet if it does not receive
the acknowledgement. Because packets can have bit errors as well as be lost, RDT
protocols are surprisingly complicated, requiring acknowledgements, timers, check-
sums, sequence numbers, and acknowledgement numbers.

Pipelined reliable data transfer. The textbook incrementally develops an RDT
stop-and-wait protocol in Section 3.4. In a stop-and-wait protocol, the source sends
one packet at a time, only sending a new packet once it has received an acknowl-
edgment for the previous packet. Such a protocol has very poor throughput per-
formance, particularly if either the transmission rate, R, or the round-trip time,
RTT, is large. In a pipelined protocol, the sender is allowed to send multiple pack-
ets without waiting for an acknowledgment. Pipelining requires an increased range
in sequence numbers and additional buffering at sender and receiver. The text-
book examined two pipelined RDT protocols in some detail: Go-Back-N (GBN)
and Selective Repeat (SR). Both protocols limit the number of outstanding unac-
knowledged packets the sender can have in the pipeline. GBN uses cumulative
acknowledgments, only acknowledging up to the first non-received packet. A sin-
gle-packet error can cause GBN to retransmit a large number of packets. In SR, the
receiver individually acknowledges correctly received packets. SR has better per-
formance than GBN, but is more complicated, both at sender and receiver.

TCP. TCP is very different from UDP. Perhaps the most important difference is that
TCP is reliable (it employs a RDT protocol) whereas UDP isn’t. Another impor-
tant difference is that TCP is connection oriented. In particular, before one process
can send application data to the other process, the two processes must “handshake”
with each other by sending to each other (a total of) three empty TCP segments.
The process initiating the TCP handshake is called the client. The process waiting
to be hand-shaken is the server. After the 3-packet handshake is complete, a con-
nection is said to be established and the two processes can send application data
to each other. A TCP connection has a send buffer and a receive buffer. On the
send side, the application sends bytes to the send buffer, and TCP grabs bytes from

33

34 STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

the send buffer to form a segment. On the receive side, TCP receives segments
from the network layer, deposits the bytes in the segments in the receive buffer, and
the application reads bytes from the receive buffer. TCP is a byte-stream protocol
in the sense that a segment may not contain a single application-layer message. (It
may contain, for example, only a portion of a message or contain multiple mes-
sages.) In order to set the timeout in its RDT protocol, TCP uses a dynamic RTT
estimation algorithm.

TCP’s RDT service ensures that the byte stream that a process reads out of its re-
ceive buffer is exactly the byte stream that was sent by the process at the other
end of the connection. TCP uses a pipelined RDT with cumulative acknowledg-
ments, sequence numbers, acknowledgment numbers, a timer, and a dynamic time-
out interval. Retransmissions at the sender are triggered by two different
mechanisms: timer expiration and triple duplicate acknowledgments.

¢ Flow control. Because a connection’s receive buffer can hold only a limited amount
of data, there is the danger that the buffer overflows if data enters the buffer faster
than it is read out of the buffer. Many transport protocols, including TCP, use flow
control to prevent the occurrence of buffer overflow. The idea behind flow control
is to have the receiver tell the sender how much spare room it has in its receive
buffer; and to have the sender restrict the amount of data that it puts in the pipeline
to be less than the spare room. Flow control speeds matching: it matches the
sender’s send rate to the receiver’s read rate.

¢ Congestion control principles. Congestion has several costs. Large queuing de-
lays occur as the packet arrival rate nears the link capacity. Unneeded retransmis-
sions by the sender in the face of large delays cause routers to use their link
bandwidth to forward unneeded copies of packets. And, when a packet is dropped
along a path, the transmission capacity that was used at each of the upstream links
to forward that packet (up to point at which it is dropped) is wasted.

¢ TCP congestion control. Because the IP layer provides no explicit feedback to end
systems regarding network congestion, TCP uses end-to-end congestion control
rather than network-assisted congestion control. The amount of data a TCP con-
nection can put into the pipe is restricted by the sender’s congestion window. The
congestion window essentially determines the send rate. Unlike the simpler GBN
and SR protocols covered in Section 3.4, this window is dynamic. TCP reduces the
congestion window during the occurrence of a loss event, where a loss event is ei-
ther a timeout or the receipt of three duplicate acknowledgements. When loss
events are not occurring, TCP increases its congestion window. This gives rise to
the sawtooth dynamics for the congestion window, as shown in Figure 3.50 on
page 267 of the textbook. The exact rules for how the loss events influence the con-
gestion window are determined by three mechanisms: Additive Increase Multi-
plicative Decrease (AIMD); slow start; and fast retransmit.

CHAPTER 3 e TRANSPORT LAYER

Review Questions

This section provides additional study questions. Answers to each question are pro-
vided in the next section.

1.

Logical communication between processes. Suppose the network layer
provides the following service. The source host accepts from the transport
layer a segment of maximum size 1,000 bytes and a destination host address.
The network layer then guarantees delivery of the segment to the transport
layer at the destination host. Suppose many network application processes
can be running at the destination host.

a. Design the simplest possible transport layer protocol that will get appli-
cation data to the desired process at the destination host. Assume the op-
erating system in the destination host has assigned a two-byte port
number to each running application process.

b. Modify this protocol so that it provides a “return address” to the destina-
tion process.

c. In your protocols, does the transport layer “have to do anything” in the
core of the computer network?

Logical communication between families. Consider a planet where every-
one belongs to a family of five, every family lives in its own house, each
house has a unique address, and each person in a house has a unique name.
Suppose this planet has a mail service that delivers letters from source house
to destination house. The mail service requires that (i) the letter be in an en-
velope and that (ii) the address of the destination house (and nothing more)
be clearly written on the envelope. Suppose each family has a delegate fami-
ly member who collects and distributes letters for the other family members.
The letters do not necessarily provide any indication of the recipients of the
letters.

a. Using the solution to Question 1 as inspiration, describe a protocol that
the delegates can use to deliver letters from a sending family member to
a receiving family member.

b. In your protocol, does the mail service ever have to open the envelope
and examine the letter in order to provide its service?

UDP demultiplexing. Suppose a process in host C has a UDP socket with

port number 787. Suppose host A and host B each send a UDP segment to

host C with destination port number 787. Will both of these segments be di-

rected to the same socket at host C? If so, how will the process at host C

know that these segments originated from two different hosts?

UDP and TCP checksum.

a. Suppose you have the following two bytes: 00110101 and 01101001.
What is the 1s complement of these two bytes?

35

36 STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

b. Suppose you have the following two bytes: 11110101 and 01101001.
What is the 1s complement of these two bytes?

c. For the bytes in part a), give an example where one bit is flipped in each
of the two bytes and yet the 1s complement doesn’t change.

5. TCP multiplexing. Suppose that a Web server runs in host C on port 80.
Suppose this Web server uses persistent connections, and is currently receiv-
ing requests from two different hosts: A and B. Are all of the requests being
sent through the same socket at host C? If they are being passed through dif-
ferent sockets, do both of the sockets have port 80? Discuss and explain.

6. Why choose UDP? An application may choose UDP for a transport protocol
because UDP offers finer application control (than TCP) of what data is sent
in a segment and when it is sent.

a. Why does an application have more control of what data is sent in a seg-
ment?

b. Why does an application have more control of when the segment is sent?

7. A simple synchronized message exchange protocol. Consider two network
entities: A and B, which are connected by a perfect bi-directional channel
(that is, any message sent will be received correctly; the channel will not
corrupt, lose, or re-order packets). A and B are to deliver data messages to
each other in an alternating manner: first A must deliver a message to B, then
B must deliver a message to A, then A must deliver a message to B, and so
on. Draw a FSM specification for this protocol (one FSM for A and one
FSM for B). Don’t worry about a reliability mechanism here; the main point
is to create a FSM specification that reflects the synchronized behavior of
the two entities. You should use the following events and actions, which
have the same meaning as protocol rdt1.0, shown on page 204 of the text-
book:

rdt_send(data), packet = make_pkt(data),
udt_send(packet), rdt_rcv(packet), extract (packet,data),
deliver data(data).

Make sure that your protocol reflects the strict alternation of sending be-
tween A and B. Also, be sure to indicate the initial states for A and B in your
FSM description.

8. Adding ACKs to the simple synchronized message exchange protocol.
Let’s modify the protocol in Question 7: After receiving a data message from
the other entity, an entity should send an explicit acknowledgement back to
the other side. An entity should not send a new data item until after it (i) has
received an ACK for its most recently sent message, (ii) has received a data
message from the other entity, and (iii) ACKed that message received from
the other entity. Draw the FSM specification for this modified protocol. You
may use the new function that was introduced in protocol rdt2.0, shown on

10.

CHAPTER 3 e TRANSPORT LAYER

page 206 in the textbook: udt_send(ACK). You may want to use (but do
not have to, depending on your solution) the following event as well:
rdt_rcv(rcvpkt) && isACK(rcvpkt), which indicates the receipt of an
ACK packet (as in rdt2.0 in the textbook), and rdt_rcv(rcvpkt) && is-
DATA (rcvpkt), which indicates the receipt of a data packet.

A simple three-node synchronized message exchange protocol. Consider
three network entities: A, B, and C, which are connected by perfect point-to-
point bi-directional channels (that is, any message sent will be received cor-
rectly; the channel will not corrupt, lose, or re-order packets). A, B, and C
are to deliver data messages to each other in a rotating manner: first A must
deliver a message to B, then B must deliver a message to C, and then C must
deliver a message to A, and so on. Draw a FSM specification for this proto-
col (one FSM for A, one for B, and one for C). You should use the same
events as in Questions 7 and 8, except that the udtsend () function now in-
cludes the name of the recipient. For example, udt_send(data,B) is used
to send a message to B. Your protocol does not have to use ACK messages.

A final variation on the simple synchronized message exchange protocol.
Consider (yet again!) two network entities: A and B, which are connected by
a bi-directional channel that is perfect (that is, any message sent will be re-
ceived correctly; the channel will not corrupt, lose, or re-order packets). A
and B are to deliver data messages to each other in the following manner: A
is to send fwo messages to B, and then B is to send one message to A. Then
the cycle repeats. You should use the same events as in the questions above.
Your protocol does not have to use ACK messages. (The key idea is to think
about how to use states to track how many messages A has sent: one or two.)

37

38 STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

rdt_send(data)

snkpkt=make_pkt (data)
udt_send (sndpkt)

Wait for
call from
above

rdt_send (data)

rdt_send (data)

snkpkt=make_pkt (data)
udt_send (sndpkt)

Wait for Wait for
2nd call data from
above B

rdt_rcv (rcvpkt)

snkpkt=make_pkt (data)
udt_send (sndpkt)

Wait for
call from
above

extract (rcvpkt,data)
deliver_data(data)

rdt_rcv (packet)

extract (packet,data)
deliver_data(data)

[
Wait for Wait for
data from 2nd data
A from A

rdt_rcv (packet)

extract (packet,data)
deliver_data(data)

11. Reliable data transfer. Recall the NAK-free rdt protocol in the textbook
(figure 3.13) for a channel with bit errors (but without packet loss). The FSM
protocol is shown below. How many states does the receiver need: 1, 2, or 4?
What are these states? Without looking at the textbook, draw the FSM for
the corresponding receiver. (Hint: the receiver must now include the se-
quence number of the packet being acknowledged.)

12.

rdt_send (data)

CHAPTER 3

sndpkt=make_pkt (0, data, checksum)

udt_send (sndpkt)

TRANSPORT LAYER

rdt_rcv (rcvpkt) &&
(corrupt (rcvpkt) | |
isNAK (rcvpkt, 1))

Wait for Wait for udt_send (sndpkt)
call 0 from ACK or
above NAK 0
rdt_rcv (rcvpkt) rdt_rcv(rcvpkt)
&& notcorrupt (rcvpkt) && notcorrupt (rcvpkt)
&& 1sACK (rcvpkt, 1) && 1sACK (rcvpkt, 0)
A A
Wait for Wait for
ACK or call 1 from
NAK 1 above

rdt_rcv(rcvpkt) &&
(corrupt (rcvpkt) | |
isNAK (rcvpkt, 0))

udt_send (sndpkt) rdt_send (data)

sndpkt=make_pkt (1,data, checksum)
udt_send (sndpkt)

Designing a minimalist data transfer protocol. Chapter 3 shows a number
of mechanisms used to provide for reliable data transfer:

e checksum

e ACKs

e timers

e sequence numbering

Consider a sender and receiver that are connected by a sender-to-receiver
channel that can corrupt and lose packets. The receiver-to-sender channel is
perfect (that is, it will not lose or corrupt packets). The delay on each chan-
nel is known to always be less than some maximum value, d. Neither chan-
nel will reorder packets. (Note: re-read the channel properties just described
and make sure you understand them!) Design a reliable data transfer proto-
col for this scenario using only those mechanisms (among the four listed
above) that are absolutely required. That is, if you use a mechanism that is
not required, you will not receive full credit, even if the protocol works.
Your protocol should be as simple as possible but have the functionality to
deliver data reliably under the stated assumptions. Your solution does not
need to be efficient; it must work correctly.

39

40

STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

13.

14.

15.

16.

a. Draw the sender and receiver FSMs.

For each of the mechanisms (from among the four listed above) that you
use in your protocol, explain the role/purpose of the mechanism and why
you cannot get by without it. (Note: this does not imply that your proto-
col will use all four mechanisms above—maybe it does; maybe it does
not. However, you must explain why you need the mechanisms that you
have chosen to include.)

Pipelined reliable data transfer. Recall the Go-back-N protocol in
Section 3.4.

a. Does this protocol have a timer for each unacknowledged packet?
b. When a timer expires, what happens?

c. Use the interactive applet for Go-Back-N and quickly try to generate
seven packets. How many packets did you generate? Just after attempt-
ing to generate the seven packets, pause the animation and kill the first
packet. What happens when the timeout expires?

Pipelined reliable data transfer with selective repeat. Recall the selective
repeat protocol in Section 3.4.

a. Does this protocol have a timer for each unacknowledged packet?

b. When an acknowledgement arrives for the oldest unacknowledged packet,
what happens?

Can a window size be too large for the sequence number space? Consid-
er the Go-Back-N protocol. Suppose that the size of the sequence number
space (number of unique sequence numbers) is N, and the window size is N.
Show (give a timeline trace showing the sender, receiver, and the messages
they exchange over time) that the Go-Back-N protocol will not work correct-
ly in this case.

TCP sequence numbers. Host A and B are communicating over a TCP con-
nection, and Host B has already received from A all bytes up through byte
144. Suppose that Host A then sends two segments to Host B back-to-back.
The first and second segments contain 20 and 40 bytes of data, respectively.
In the first segment, the sequence number is 145, source port number is 303,
and the destination port number is 80. Host B sends an acknowledgement
whenever it receives a segment from Host A.

a. In the second segment sent from Host A to B, what are the sequence
number, source port number, and destination port number?

b. If the first segment arrives before the second segment, in the acknowl-
edgement of the first arriving segment, what is the acknowledgment
number, the source port number, and the destination port number?

c. If the second segment arrives before the first segment, in the acknowledge-
ment of the first arriving segment, what is the acknowledgment number?

17.

18.

19.

20.

CHAPTER 3 e TRANSPORT LAYER

d. Suppose the two segments sent by A arrive in order at B. The first ac-
knowledgement is lost and the second segment arrives after the first
timeout interval, as shown in the figure below. Complete the diagram,
showing all other segments and acknowledgements sent. (Assume there
is no additional packet loss.) For each segment you add to the diagram,
provide the sequence number and number of bytes of data; for each ac-
knowledgement that you add, provide the acknowledgement number.

Host A Host B
C C
— —
Timeout
interval
X
Timeout
interval
I \/

Round-trip time estimation. Let « = 0.2. Suppose for a given TCP con-
nection three acknowledgments have been returned with RTTs: RTT for first
ACK = 80 msec; RTT for second ACK = 60 msec; and RTT for third

ACK = 100 msec. Determine the value of EstimatedRTT after each of the

three acknowledgments.

Flow control. Host A and B are directly connected with a 100 Mbps link.

There is one TCP connection between the two hosts, and Host A is sending an

enormous file to Host B over this connection. Host A can send application data

into the link at 50 Mbps but Host B can read out of its TCP receive buffer at a

maximum rate of 10 Mbps. Describe the effect of TCP flow control.

TCP connection management.

a. A server process in Host B has a welcoming socket at port 977. What
will trigger the server process to create a connection socket? What is the
source IP address and source port number for this connection socket?

b. How many bytes is a TCP SYN segment? What flags are set in a TCP
SYN segment?

c. What must happen for Host B to complete this connection?

TCP congestion control. Consider sending a large file from one host to an-

other over a TCP connection that has no loss.

41

42 STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

21.

22.

a. Suppose TCP uses AIMD for its congestion control without slow start.
Assuming CongWin increases by 1 MSS every time an ACK is received
and assuming approximately constant round-trip times, how long does it
take for CongWin to increase from 1 MSS to 5 MSS (assuming no loss
events and constant RTT)?

b. What is the average throughput (in terms of MSS and RTT) for this con-
nection up through time = 4 RTT?

More TCP congestion control. Suppose that in TCP, the sender window is
of size N, the base of the window is at sequence number x, and the sender
has just sent a complete window’s worth of segments. Let RTT be the
sender-to-receiver-to-sender round-trip time, and let MSS be the segment
size.

a. Isitpossible that there are ACK segments in the receiver-to-sender chan-
nel for segments with sequence numbers lower than x? Justify your an-
SWer.

b. Assuming no loss, what is the throughput (in packets/sec) of the sender-
to-receiver connection?

c. Suppose TCP is in its congestion avoidance phase. Assuming no loss,
what is the window size after the N segments are ACKed?

TCP Potpourri.

a. Consider two TCP connections, one between Hosts A (sender) and B (re-
ceiver), and another between Hosts C (sender) and D (receiver). The
RTT between A and B is half that of the RTT between C and D. Suppose
that the senders’ (A’s and C’s) congestion window sizes are identical. Is
their throughput (number of segments transmitted per second) the same?
Explain.

b. Now suppose that the average RTT between A and B, and C and D are
identical. The RTT between A and B is constant (never varies), but the
RTT between C and D varies considerably. Will the TCP timer values of
the two connections differ, and if so, how are they different, and why are
they different?

c. Give one reason why TCP uses a three-way (SYN, SYNACK, ACK)
handshake rather than a two-way handshake to initiate a connection.

d. Itis said that a TCP connection “probes” the network path it uses for
available bandwidth. What does this mean?

e. What does it mean when we say that TCP uses “cumulative acknowl-
edgement”? Give two reasons why cumulative acknowledgment is ad-
vantageous over selective acknowledgment.

CHAPTER 3 e TRANSPORT LAYER

Answers to Review Questions

1. a. Call this protocol Simple Transport Protocol (STP). At the sender side,
STP accepts from the sending process a chunk of data not exceeding 998
bytes, a destination host address, and a destination port number. STP
adds a two-byte header to each chunk and puts the port number of the
destination process in this header. STP then gives the destination host ad-
dress and the resulting segment to the network layer. The network layer
delivers the segment to STP at the destination host. STP then examines
the port number in the segment, extracts the data from the segment, and
passes the data to the process identified by the port number.

b. The segment now has two header fields: a source port field and a desti-
nation port field. At the sender side, STP accepts a chunk of data not ex-
ceeding 996 bytes, a destination host address, a source port number, and
a destination port number. STP creates a segment that contains the appli-
cation data, source port number, and destination port number. Then it
gives the segment and the destination host address to the network layer.
After receiving the segment, STP at the receiving host gives the applica-
tion process the application data and the source port number.

c. No, the transport layer does not have to do anything in the core; the
transport layer “lives” in the end systems.

2. a. For sending a letter, the family member is required to give the delegate
the letter itself, the address of the destination house, and the name of the
recipient. The delegate clearly writes the recipient’s name on the top of
the letter. Then the delegate puts the letter in an envelope and writes the
address of the destination house on the envelope. Then the delegate gives
the letter to the planet’s mail service. At the receiving side, the delegate
receives the letter from the mail service, takes the letter out of the enve-
lope, and notes the recipient name written at the top of the letter. Then
the delegate gives the letter to the family member with this name.

b. No, the mail service does not have to open the envelope; it only exam-
ines the address on the envelope.

3. Yes, both segments will be directed to the same socket. For each received
segment, at the socket interface, the operating system will provide the
process with the IP address of the host that sent the segment. The process
can use the supplied IP addresses to determine the origins of the individual
segments.

4. a. Adding the two bytes gives 10011110. Taking the 1s complement gives
01100001.

b. Adding the two bytes gives 01011111. The 1s complement gives
10100000.

44 STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

c. First byte = 00110001; second byte = 01101101.

5. For each persistent connection, the Web server creates a separate “connec-
tion socket.” Each connection socket is identified with a four-tuple: (source
IP address, source port number, destination IP address, destination port num-
ber). When Host C receives an IP datagram, it examines these four fields in
the datagram/segment to determine to which socket it should pass the pay-
load of the TCP segment. Thus, the requests from A and B pass through dif-
ferent sockets. The identifier for both of these sockets has 80 for the
destination port; however, the identifiers for these sockets have different val-
ues for the source IP addresses. Unlike UDP, when the transport layer passes
a TCP segment’s payload to the application process, it does not specify the
source IP address, as this is implicitly specified by the socket identifier.

6. a. Consider sending an application message over a transport protocol. With
TCP, the application writes data to the connection’s send buffer and TCP
will grab bytes without necessarily putting a single message in the TCP
segment; TCP may put more or less than a single message in a segment.
UDP, on the other hand, encapsulates in a segment whatever the applica-
tion gives it; so that, if the application gives UDP an application mes-
sage, this message will be the payload of the UDP segment. Thus, with
UDP, an application has more control of what data is sent in a segment.

b. With TCP, due to flow control and congestion control, there may be sig-
nificant delay from the time when an application writes data to its send
buffer until when the data is given to the network layer. UDP does not
have delays due to flow control and congestion control.

7.
rdt_send (data) rdt_send(data)
sndpkt=make pkt (data) sndpkt=make pkt (data)
udt_send (sndpkt) udt_send (sndpkt)
~ -
~o -
~o -
A g
Wait for Wait for Wait for Wait for
call from msg from call from msg from
above B above A
rdt_rcv (packet) rdt_rcv (packet)
extract (packet,data) extract (packet,data)

deliver data(data) deliver_data(data)

CHAPTER 3 e TRANSPORT LAYER

rdt_send (data)
sndpkt=make_ pkt (data)
udt_send (sndpkt)
N
N
~
~
A
Wait for Wait for rdt_rcv(rcvpkt) &&
call from msg from iSACK (rcvpkt)
above B
rdt_rcv (packet) && 1isDATA (rcvpkt)
extract (packet,data)
deliver data(data)
udt_send (ACK)
rdt_send (data)
sndpkt=make pkt (data)
udt_send (sndpkt)
-
-
-
-~
e
Wait for Wait for rdt_rcv (rcvpkt) &&
call from msg from isACK (rcvpkt)

above A

rdt_rcv(packet) && isDATA (rcvpkt)

extract (packet,data)
deliver_data(data)
udt_send (ACK)

In the solution above, we’ve used the iSACK(rcvpkt) and isSDATA(rcvpkt)
expressions to indicate whether an ACK or DATA message has been re-
ceived. If we add another state to each FSM, which is used to reflect whether
the entity is waiting for an ACK or waiting for DATA, then we do not need
to use these expressions. Below is an alternate solution (for A only; B is sim-
ilar) that does not use these expressions. The solution above and the solution
below are equally good, they differ only in how they represent the handling
of the received message. Indeed, they are FSMs for the same protocol!

45

STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

rdt_send (data)

sndpkt=make_pkt (data)
udt_send (sndpkt)
~
\\
\\
A
Wait for Wait for
call from ACK from
above B
rdt_rcv (packet) Wait for rdt_rcv(rcvpkt)
msg from
extract (packet,data) B

deliver_data (data)
udt_send (ACK)

9. The answer to this question is essentially the same as for the first of these
FSM questions, except that we need to indicate the address of the outgoing
message. Because we have specified that the channels are point-to-point, A
does not see any communication between B and C. Thus, A only needs to
send its message to B, and then wait for a message from C before sending
another message to B. The FSM for A is shown below. (Note that if we had
specified that the channel connecting the entities was a broadcast channel,
then we would have had to consider the fact that A was receiving messages
sent from B to C, which A would receive but then would have to ignore.)

rdt_send (data)

/\ sndpkt=make_pkt (data)
udt_send (sndpkt, B)

Wait for Wait for
call from data from
above C

rdt_rcv (packet)

extract (packet,data)
deliver_data (data)

CHAPTER 3 e TRANSPORT LAYER

10.

/\ rdt_send(data) rdt_send (data)
snkpkt=make_pkt (data) snkpkt=make_pkt (data)
udt_send (sndpkt) udt_send (sndpkt)

~
~
> ~
A
Wait for Wait for Wait for
call from 2nd call data from
above above B

rdt_rcv (packet)
extract (packet,data)
deliver_data(data)

B rdt_send (data) rdt_rcv(rcvpkt)
snkpkt=make_pkt (data) y extract (packet,data)
udt_send (sndpkt) // deliver_data (data)

/
/
¥
Wait for Wait for Wait for
call from data from 2nd data
above A from A

rdt_rcv (packet)

extract (packet,data)
deliver_data(data)

47

48 STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

11. This protocol needs two states: wait for zero from below; wait for one from
below. The FSM for the receiver is given below.

rdt_send (data)

sndpkt=make_pkt (0, data, checksum)
udt_send (sndpkt)

rdt_rcv (rcvpkt) &&

\\\ (corrupt (revpkt) | |
~a isACK (rcvpkt, 1))
Wait for Wait for udt_send (sndpkt)
call 0 from ACK 0
above
rdt_rcv (rcvpkt) rdt_rcv (rcvpkt)
&& notcorrupt (rcvpkt) && notcorrupt (rcvpkt)
&& 1sACK (rcvpkt, 1) && 1sACK (rcvpkt, 0)
A A
Wait for Wait for
ACK 1 call 1 from
above

rdt_rcv (rcvpkt) &&
(corrupt (rcvpkt) | |
isACK (rcvpkt, 0))

udt_send (sndpkt) rdt_send (data)

sndpkt=make_pkt (1, data, checksum)
udt_send (sndpkt)

rdt_rcv(rcvpkt) && notcorrupt (rcvpkt)
&& has_seq0 (rcvpkt)

extract (rcvpkt,data)
deliver_data(data)

A sndpkt=make_pkt (ACK, 0, checksum)
udt_send (sndpkt)
oncethru=0 oncethru=1
\
\
\
\
rdt_rev (rcvpkt) && \\ rdt_rev (rcvpkt) &&
(corrupt (rcvpkt) | | A (corrupt (rcvpkt) | |
has_seq0 (rcvpkt)) Wait for Wait for has_seq0 (rcvpkt)
if (oncethru==1) 0 from 1 from udt_send (sndpkt)
below below

udt_send (sndpkt)

rdt_rcv(rcvpkt) && notcorrupt (rcvpkt)
&&has_seqgl (rcvpkt)

extract (rcvpkt,data)
deliver_data (data)
sndpkt=make_pkt (ACK, 1, checksum)
udt_send (sndpkt)

12.

CHAPTER 3 e TRANSPORT LAYER

rdt_send (data)

sndpkt=make_pkt (data, checksum)
udt_send (sndpkt)
starttimer (2d)

Wait for Wait for timeout
call from ACK udt_send (sndpkt)

above starttimer (2d)

rdt_rcv (rcvpkt) && isACK (rcvpkt)

stop timer

a. sending side

Wait for
call from
below

rdt_rcv(rcvpkt) && notcorrupt (rcvpkt)

extract (rcvpkt,data)
deliver_data (data)
udt_send (sndpkt)

b. receiving side

b. Because the sender-to-receiver channel can corrupt packets, the data sent
on the sender-to-receiver channel will need a checksum to detect bit errors.
Because the sender-to-receiver channel can lose packets, we will need to
have a timer to timeout and retransmit packets that have not been received
by the receiver. The receiver will need to indicate which packets it has re-
ceived by using an ACK message; if a packet is not received or is received
corrupted, no ACK is sent. Because the maximum delay of the channel is
bounded at, d the sender can set its timeout value to 2d, and therefore only
retransmit when it is certain that a retransmission is needed (and expected
by the receiver). Thus, there is no need for sequence numbers, since there
will be no unneeded (and unexpected at the receiver) retransmissions. .

49

50

STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

13.

14.

15.

16.

&

No, GBN has only one timer, for the oldest unacknowledged packet.
When the timer expires, the sender resends all packets that have been
sent but have not yet been acknowledged.

The applet only generates six packets since the window size is six. The
sender doesn’t receive an acknowledgment for previously unacknowl-
edged data before the timer expires. When the timer expires, the sender
resends all six packets.

Yes, there is a timer for each unacknowledged packet.

The window advances. If the sender has another packet to send, it sends
the packet and starts a timer for the packet.

Suppose that the sequence number space is 0,1 and N = 2, that is, that two
messages can be transmitted but not yet acknowledged. The timeline below
shows an error that can occur.

MO
Ml Deliver MO
X Deliver M1
Timeout, Al
Resend
copy
MO MO
Deliver duplicate
of MO: error!
A0

a. The first and second segments contain 20 and 40 bytes of data, respec-

b.

C.

tively. In the second segment sent from A to B, the sequence number is
165, the source port number is 303, and the destination port number is
80.

The first acknowledgment has acknowledgment number 165, source port
80, and destination port 303.

The acknowledgment number will be 145, indicating that it is still wait-
ing for bytes 145 and onward.

CHAPTER 3 e TRANSPORT LAYER 51

d. The sequence number of the retransmission is 145 and it carries 20 bytes
of data. The acknowledgment number of the additional acknowledgment
is 205.

Host A Host B

E B

Timeout
interval

Timeout
interval

17. After the first ACK, the EstimatedRTT is equal to the RTT associated with
the ACK, namely, 80 msec. After the second ACK, we use the following
formula:

EstimatedRTT = (1 — «) EstimatedRTT + « SampleRTT
to obtain:
EstimatedRTT = (0.8)(80 msec) + (0.2)(60 msec) = 76 msec
Similarly, after third ACK, we get
EstimatedRTT = (0.8)(76 msec) + (0.2)(100 msec) = 71.2 msec

18. Host A sends data into the receive buffer faster than Host B can remove data
from the buffer. The receive buffer fills up at a rate of roughly 40 Mbps.
When the buffer is full, Host B signals to Host A to stop sending data by set-
ting RevWindow = 0. Host A then stops sending until it receives a TCP seg-
ment with RevWindow > 0. Host A will thus repeatedly stop and start
sending as a function of the RcvWindow values it receives from Host B. On
average, the long-term rate at which host A sends data to host B as part of
this connection is no more than 10 Mbps.

19. a. When Host B receives a TCP SYN segment with destination port number
977, the operating system at Host B will create a (half-open) connection
socket. The TCP SYN packet has a source port number, which becomes
the source port number of the socket. The TCP SYN segment is also con-
tained in an IP datagram, which has a source IP address, which in turn
becomes the source IP address for the socket.

52

STUDY COMPANION FOR COMPUTER NETWORKING, THIRD EDITION

20.

21.

22.

A TCP SYN packet contains no data and is thus 20 bytes. In a SYN seg-
ment, the SYN flag is set, but not the ACK flag.

After receiving the SYN packet, the server sends to the client on Host B
a SYNACK segment, which is also 20 bytes, and which has both the
SYN and ACK flags set. The client then sends an ACK packet back to
the server. Upon receiving this ACK packet, the connection is fully open
at both the client and server sides.

It takes 1 RTT to increase CongWin to 2 MSS; 2 RTTs to increase to 3
MSS; 3 RTTs to increase to 4 MSS; and 4 RTTSs to increase to 5 MSS.

In the first RTT 1 MSS was sent; in the second RTT 2 MSS were sent; in
the third RTT 3 MSS were sent; in the fourth RTT 4 MSS were sent.
Thus, up to time 4 RTT, 1 + 2 + 3 + 4 = 10 MSS were sent (and ac-
knowledged). Thus, one can say that the average throughput up to time 4
RTT was (10 MSS)/(4 RTT) = 2.5 MSS/RTT.

It is possible. Suppose that the window size is N = 1. The sender sends
packet x — 1, which is delayed and so it timeouts and retransmits x — 1.
There are now two copies of x — 1 in the network. The receiver receives
the first copy of x — 1 and ACKs. The receiver then receives the second
copy of x — 1 and ACKs. The sender receives the first ACK and sets its
window base to x. At this point, there is still an ACK for x — 1 propagat-
ing back to the sender.

Assume that N is measured in segments. The sender can thus send N seg-
ments, each of size MSS bytes every RTT sec. The throughput is
N - MSS/RTT.

N+ 1

No. The two sessions will transmit the same number of segments per
RTT. But since the RTT of the A-B connection is half that of the other
session, its throughput will be twice as large.

The TCP timer takes the estimate of the RTT and adds on a factor to ac-
count for the variation in RTTs. Therefore, the C-D connection timeout
value will be larger.

Suppose a client transmits multiple SYN messages that take a long time
to be received at the server, so the client terminates (thinking the server
is dead). The server then accepts these SYN connections (with only a
two-way handshake, the server needs to commit as soon as the SYN is
received). However, the client side is no longer present, so the server
now has multiple connections opened with no client on the other side.

TCP’s sawtooth behavior results from TCP continuing to increase its
transmission rate until it congests some link in the network (that is, until
there is no unused bandwidth on that link) at which point a loss occurs.
TCP then backs off and continues to increase its bandwidth again.

CHAPTER 3 e TRANSPORT LAYER

An acknowledgement of X in TCP tells the sender that all data up to X
has been correctly received. Cumulative ACKs can decrease the amount
of ACK overhead. For example, a TCP receiver will wait a short time be-
fore ACKing in the hope that the next in-sequence packet will arrive, and
then will just generate a single ACK (for the second packet), which will
acknowledge both packets. Also even if the receiver separately ACKs
packets X and X + 1, if the ACK of X is lost but the ACK of X + 1 is
received, the sender will know that X was received by the receiver.

53

